Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.581
Filtrar
1.
Ann Med ; 56(1): 2337717, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38590148

RESUMO

BACKGROUND: The prevalence of anabolic-androgenic steroids (AAS) use is on the rise among athletes and bodybuilders worldwide. In addition to the well-documented adverse effects on hepatic, renal, and reproductive functions, there is an increasing recognition of psychiatric complications associated with AAS use. This study aimed to investigate psychiatric morbidity among male bodybuilders who are AAS users. METHODS: In this cross-sectional study, 25 male bodybuilders using AAS (mean age 31.2 ± 8.9 years) were compared with a control group of 25 healthy male bodybuilders matched in age (31.3 ± 5.5 years). The demographic, hormonal, and biochemical parameters of the participants were recorded. The impact of AAS use on psychiatric morbidity was assessed using the Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) in both groups. RESULTS: The BDI and BAI scores were significantly higher in male bodybuilders using anabolic-androgenic steroids (p < 0.0001). While the control group showed no instances of anxiety, seven individuals in the AAS user group reported mild anxiety. No participants in the control group exhibited depression, whereas seven AAS users displayed depressive symptoms (4 mild, 3 moderate). Correlations were observed between lactate dehydrogenase (LDH) levels and BAI scores, creatinine levels and both BAI and BDI scores, as well as between estradiol levels and BDI. CONCLUSION: The study concluded that AAS use among male bodybuilders is associated with elevated levels of depression and anxiety. Our findings suggest a potential correlation between anxiety and depression levels and the levels of creatinine, LDH, and estradiol in AAS users.


Assuntos
Anabolizantes , Esteróides Androgênicos Anabolizantes , Humanos , Masculino , Adulto Jovem , Adulto , Estudos Transversais , Creatinina , Depressão/induzido quimicamente , Depressão/epidemiologia , Anabolizantes/efeitos adversos , Congêneres da Testosterona/efeitos adversos , Esteroides/efeitos adversos , Ansiedade/induzido quimicamente , Estradiol
2.
Environ Int ; 185: 108543, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452464

RESUMO

Exposure to environmentally hazardous substances is recognized as a significant risk factor for neurological associated disorders. Among these substances, polystyrene microplastics (PS-MPs), widely utilized in various consumer products, have been reported to exhibit neurotoxicity. However, the potential association of PS-MPs with abnormal anxiety behaviors, along with the underlying molecular mechanisms and key proteins involved, remains insufficiently explored. Here, we delineated the potential mechanisms of PS-MPs-induced anxiety through proteomics and molecular investigations. We characterized the PS-MPs, observed their accumulation in the brain, leading to anxiety-like behavior in mice, which is correlated with microglia activation and pro-inflammatory response. Consistent with these findings, our studies on BV2 microglia cells showed that PS-MPs activated NF-κB-mediated inflammation resulting in the upregulation of pro-inflammatory cytokines such as TNFα and IL-1ß. Of particular significance, HRAS was identified as a key factor in the PS-MPs induced pro-inflammatory response through whole proteomics analysis, and knockdown of H-ras effectively inhibited PS-MPs induced PERK-NF-κB activation and associated pro-inflammatory response in microglia cells. Collectively, our findings highlight that PS-MPs induce anxiety of mice via the activation of the HRAS-derived PERK-NF-κB pathway in microlglia. Our results contribute valuable insights into the molecular mechanisms of PS-MPs-induced anxiety, and may offer implications for addressing neurotoxicity and prevention the adverse effects of environmentally hazardous substances, including microplastics.


Assuntos
NF-kappa B , Síndromes Neurotóxicas , Animais , Camundongos , Ansiedade/induzido quimicamente , Substâncias Perigosas , Microplásticos/toxicidade , Plásticos , Poliestirenos/toxicidade
3.
Free Radic Biol Med ; 216: 12-22, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458393

RESUMO

As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.


Assuntos
Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Humanos , Ratos , Animais , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Superóxido Dismutase-1/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ansiedade/induzido quimicamente , Hipocampo/metabolismo
4.
J Hazard Mater ; 469: 133953, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38461670

RESUMO

Arsenic is a worldwide environmental pollutant that can impair human health. Previous studies have identified mental disorders induced by arsenic, but the environmental exposure concentrations in the early life stages associated with these disorders are poorly understood. In the present study, early-life stage zebrafish were used to explore the effects on mental disorders under 'environmental standard limit concentrations' arsenic exposures of 5, 10, 50, 150, and 500 µg/L. The results showed that arsenic exposure at these concentrations changed the locomotor behavior in larval zebrafish and was further associated with anxiety, depression, and autism-like behavior in both larval and juvenile zebrafish. Changes were noted at benchmark dose limit (BMDL) concentrations as low as 0.81 µg/L. Transcriptomics showed that immediate early genes (IEGs) fosab, egr1, egr2a, ier2b, egr3, and jund were decreased after arsenic exposure in larval and juvenile zebrafish. Nervous system impairment and anxiety, depression, and autism-like behaviors in early-life stage zebrafish at 'environmental standard limit concentrations' may be attributed to the downregulation of IEGs. These findings in zebrafish provided new experimental support for an arsenic toxicity threshold for mental disorders, and they suggest that low levels of environmental chemicals may be causative developmental factors for mental disorders.


Assuntos
Arsênio , Transtorno Autístico , Animais , Humanos , Arsênio/toxicidade , Peixe-Zebra/fisiologia , Transtorno Autístico/induzido quimicamente , Depressão/induzido quimicamente , Ansiedade/induzido quimicamente , Exposição Ambiental , Larva
5.
Physiol Behav ; 277: 114506, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432442

RESUMO

The cannabinoid system plays a key role in stress-related emotional symptoms such as anxiety. Citicoline is a supplemental substance with neuroprotective properties that alleviates anxiety-related behaviors. There is a relation between the actions of cannabinoids and cholinergic systems. So, we decided to evaluate the effects of intracerebroventricular (i.c.v.) infusion of cannabinoid CB1 receptor agents on citicoline-produced response to anxiety-like behaviors in the non-acute restraint stress (NARS) and acute restraint stress (ARS) mice. For i.c.v. microinjection of drugs, a guide cannula was inserted in the left lateral ventricle. ARS was induced by movement restraint for 4 h. Anxiety-related behaviors were assessed using an elevated plus maze (EPM). The results showed that induction of ARS for 4 h decreased the percentage of time spent in the open arms (%OAT) and the percentage of entries to the open arms (%OAE) without affecting locomotor activity, showing anxiogenic-like behaviors. i.c.v. infusion of ACPA (1 µg/mouse) induced an anxiolytic-like effect due to the enhancement of %OAT in the NARS and ARS mice. Nonetheless, i.c.v. microinjection of AM251 (1 µg/mouse) decreased %OAT in the NARS and ARS mice which suggested an anxiogenic-like response. Intraperitoneal (i.p.) administration of citicoline (80 mg/kg) induced an anxiolytic-like effect by the augmentation of %OAT in the ARS mice. Furthermore, when ACPA and citicoline were co-administrated, ACPA potentiated the anxiolytic-like effect induced by citicoline in the NARS and ARS mice. On the other hand, when AM251 and the citicoline were co-injected, AM251 reversed the anxiolytic-like response induced by the citicoline in the NARS and ARS mice. The results of this research exhibited an additive effect between citicoline and ACPA on the induction of anxiolytic-like response in the NARS and ARS mice. Our results indicated an interaction between citicoline and cannabinoid CB1 receptor drugs on the control of anxiety-like behaviors in the NARS and ARS mice.


Assuntos
Ansiolíticos , Canabinoides , Camundongos , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Citidina Difosfato Colina , Receptor CB1 de Canabinoide , Ansiedade/etiologia , Ansiedade/induzido quimicamente , Canabinoides/farmacologia
6.
Sci Total Environ ; 919: 170739, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340854

RESUMO

Nanoplastics (NPs) are unavoidable hazardous materials that result from the human production and use of plastics. While there is evidence that NPs can bioaccumulate in the brain, no enough research regarding the pathways by which NPs reach the brain was conducted, and it is also urgently needed to evaluate the health threat to the nervous system. Here, we observed accumulation of polystyrene nanoplastics (PS-NPs) with different surface modifications (PS, PS-COOH, and PS-NH2) in mouse brains. Further studies showed that PS-NPs disrupted the tight junctions between endothelial cells and transport into endothelial cells via the endocytosis and macropinocytosis pathways. Additionally, NPs exposure induced a series of alternations in behavioral tests, including anxiety- and depression-like changes and impaired social interaction performance. Further results identified that NPs could be internalized into neurons and localized in the mitochondria, bringing about mitochondrial dysfunction and a concurrent decline of ATP production, which might be associated with abnormal animal behaviors. The findings provide novel insights into the neurotoxicity of NPs and provide a basis for the formulation of policy on plastic production and usage by relevant government agencies.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Poliestirenos/toxicidade , Poliestirenos/metabolismo , Microplásticos , Depressão/induzido quimicamente , Células Endoteliais/metabolismo , Poluentes Químicos da Água/toxicidade , Ansiedade/induzido quimicamente , Nanopartículas/toxicidade , Nanopartículas/metabolismo , Neurônios/metabolismo , Plásticos
7.
Neurochem Int ; 175: 105706, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423391

RESUMO

Alcohol use disorder (AUD) is characterized by a set of behavioral, cognitive, nutritional, and physiological phenomena derived from the uncontrolled use of alcoholic beverages. There are cases in which AUD is associated with anxiety disorder, and when untreated, it requires careful pharmacotherapy. Blue Calm® (BC) is a food supplement indicated to aid restorative sleep, which has traces of medicinal plant extracts, as well as myo-inositol, magnesium bisglycinate, taurine, and L-tryptophan as its main chemical constituents. In this context, this study aimed to evaluate the potential of the BC in the treatment alcohol withdrawal-induced anxiety in adult zebrafish (aZF). Initially, BC was submitted to antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl radical. Subsequently, the aZF (n = 6/group) were treated with BC (0.1 or 1 or 10 mg/mL; 20 µL; p.o.), and the sedative effect and acute toxicity (96 h) were evaluated. Then, the anxiolytic-like effect and the possible GABAergic mechanism were analyzed through the Light & Dark Test. Finally, BC action was evaluated for treating alcohol withdrawal-induced anxiety in aZF. Molecular docking was performed to evaluate the interaction of the major chemical constituents of BC with the GABAA receptor. BC showed antioxidant potential, a sedative effect, was not toxic, and all doses of BC had an anxiolytic-like effect and showed potential for the treatment of alcohol withdrawal-induced anxiety in aZF. In addition to the anxiolytic action, the main chemical constituents of BC were confirmed in the molecular docking, thus suggesting that BC is an anxiolytic that modulates the GABAergic system and has pharmacological potential for the treatment of alcohol withdrawal-induced anxiety.


Assuntos
Alcoolismo , Ansiolíticos , Síndrome de Abstinência a Substâncias , Animais , Peixe-Zebra/fisiologia , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/psicologia , Alcoolismo/tratamento farmacológico , Simulação de Acoplamento Molecular , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Receptores de GABA-A , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos de Ansiedade/tratamento farmacológico , Suplementos Nutricionais , Hipnóticos e Sedativos
8.
Neuropharmacology ; 249: 109868, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38403263

RESUMO

Sugar bingeing induces maladaptive neuroadaptations to decrease dietary control and promote withdrawal symptoms. This study investigated sex differences in sucrose bingeing, sucrose withdrawal-induced negative mood effects and underlying neuroimmune response in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of C57BL/6J male and female mice. Two-bottle sucrose choice paradigm was used to develop sucrose dependence in mice. Female mice consumed more sucrose than male mice when given free access to water and 10% sucrose for four weeks. A significant increase in the mRNA expression of neuroinflammatory markers (Il1ß, Tnfα) was found in the PFC of males exposed to sucrose withdrawal. Sucrose bingeing and subsequent sucrose withdrawal showed elevated protein levels of pro-inflammatory cytokines/chemokines/growth factors in the PFC (IL-1ß, IL-6, TNFα, IFN-γ, IL-10, CCL5, VEGF) and NAc (IL-1ß, IL-6, IL-10, VEGF) of male mice as compared to their water controls. These effects were concurrent with reduced mRNA expression of neuronal activation marker (cFos) in the PFC of sucrose withdrawal males. One week of sucrose withdrawal after prolonged sucrose consumption showed anxiety-like behavior in male mice, not in females. In conclusion, this study demonstrates that repeated access to sucrose induces anxiety-like behavior when the sugar is no longer available in the diet and these effects are male-specific. Elevated neuroinflammation in reward neurocircuitry may underlie these sex-specific effects.


Assuntos
Interleucina-10 , Sacarose , Camundongos , Feminino , Masculino , Animais , Fator de Necrose Tumoral alfa , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular , Camundongos Endogâmicos C57BL , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Água , RNA Mensageiro
9.
J Psychiatr Res ; 171: 185-196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301534

RESUMO

Anxiety disorders, common symptoms during morphine withdrawal, are important negative reinforcement factors leading to relapse. Lateral habenula serves as a negative reinforcement center, however its role in morphine withdrawal-induced anxiety remains uncovered. The hyperpolarization activated cyclic nucleotide-gated (HCN) channels have been reported to be important in emotion processing and addiction, but the role of HCN in anxiety from drug protracted abstinence remains elusive. In this study, by using behavioral test, Western blot, immunofluorescence, electrophysiology and virus-mediated regulation of HCN, we found that: (1) Intra-LHb injection of selective HCN blocker ZD7288 alleviated anxiety-like behaviors in morphine protracted abstinent male mice. (2) The LHb neuronal activity was increased by morphine protracted abstinence. (3) LHb neurons were inhibited by ZD7288 and activated by 8-Br-cAMP respectively, which were enhanced by morphine withdrawal. (4) HCN1 in the LHb was upregulated by morphine withdrawal. (5) Virus-mediated overexpression of HCN1 in the LHb was sufficient to produce anxiety-like behaviors in male mice and virus-mediated knockdown of HCN1 in the LHb prevented the anxiety-like behaviors in male mice. The findings reveal that selective blockade of HCN1 channels in the LHb may represent a therapeutic approach to morphine withdrawal-induced anxiety.


Assuntos
Habenula , Morfina , Camundongos , Masculino , Animais , Morfina/farmacologia , Habenula/fisiologia , Neurônios , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Transtornos de Ansiedade
10.
Biochem Biophys Res Commun ; 699: 149548, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281329

RESUMO

Most chemotherapeutic drugs are potent and have a very narrow range of dose safety and efficacy, most of which can cause many side effects. Chemotherapy-induced peripheral neuropathy (CIPN) is the most common and serious side effect of chemotherapy for cancer treatment. However, its mechanism of action is yet to be fully elucidated. In the present study, we found that the treatment of the chemotherapy drug elemene induced hyperalgesia accompanied by anxiety-like emotions in mice based on several pain behavioral assays, such as mechanical allodynia and thermal hyperalgesia tests. Second, immunostaining for c-fos (a marker of activated neurons) further showed that elemene treatment activated several brain regions, including the lateral septum (LS), cingulate cortex (ACC), paraventricular nucleus of the thalamus (PVT), and dorsomedial hypothalamic nucleus (DMH), most notably in the GABAergic neurons of the lateral septum (LS). Finally, we found that both chemogenetic inhibition and apoptosis of LS neurons significantly reduced pain- and anxiety-like behaviors in mice treated with elemene. Taken together, these findings suggest that LS is involved in the regulation of elemene-induced chemotherapy pain and anxiety-like behaviors, providing a new target for the treatment of chemotherapy pain induced by elemene.


Assuntos
Dor , Doenças do Sistema Nervoso Periférico , Sesquiterpenos , Camundongos , Animais , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Neurônios GABAérgicos , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Ansiedade/induzido quimicamente
11.
Pharmacol Biochem Behav ; 236: 173707, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244864

RESUMO

Synthetic cannabinoids are associated with higher risk of dependence and more intense withdrawal symptoms than plant-derived Δ9-tetrahydrocannabinol (THC). Avoidance of withdrawal symptoms, including anxiogenic effects, can contribute to continued cannabinoid use. Adult male and female Long-Evans rats were given escalating doses of WIN 55,212-2 (WIN) via twice daily intrajugular infusions. Precipitated withdrawal was elicited with SR 141716 (rimonabant) 4 h after the final infusion. Global withdrawal scores (GWS) were compiled by summing z-scores of observed somatic behaviors over a 30-min period with locomotor activity simultaneously collected via beam breaks. Rimonabant precipitated withdrawal in female and male rats at 3 or 10 mg/kg, respectively, but the individual behaviors contributing to GWS were not identical. 3 mg/kg rimonabant did not impact locomotor behavior in females, but 10 mg/kg decreased locomotion in male controls. Spontaneous withdrawal observed between 6 and 96 h after the final infusion was quantifiable up to 24 h following WIN administration. Individual behaviors contributing to GWS varied by sex and time point. Males undergoing spontaneous withdrawal engaged in more locomotion than females undergoing withdrawal. Separate groups of rats were subjected to a battery of anxiety-like behavioral tests (elevated plus maze, open field test, and marble burying test) one or two weeks after WIN or vehicle infusions. At one week abstinence, sex-related effects were noted in marble burying and the open field test but were unrelated to drug treatment. At two weeks abstinence, females undergoing withdrawal spent more time grooming during marble burying and performed more marble manipulations than their male counterparts. WIN infusions did not impact estrous cycling, and GWS scores were not correlated with estrous at withdrawal. Collectively, these results show qualitative sex differences in behaviors contributing to the behavioral experience of cannabinoid withdrawal supporting clinical findings from THC.


Assuntos
Benzoxazinas , Canabinoides , Morfolinas , Naftalenos , Síndrome de Abstinência a Substâncias , Ratos , Feminino , Animais , Masculino , Agonistas de Receptores de Canabinoides/farmacologia , Rimonabanto/farmacologia , Dronabinol/efeitos adversos , Piperidinas/farmacologia , Pirazóis , Ratos Long-Evans , Canabinoides/farmacologia , Ansiedade/induzido quimicamente , Carbonato de Cálcio
12.
Neuroscience ; 541: 23-34, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38266908

RESUMO

Schizophrenia, a complex psychiatric disorder with diverse symptoms, has been linked to ketamine, known for its N-methyl-D-aspartate (NMDA) receptor antagonistic properties. Understanding the distinct roles and mechanisms of ketamine is crucial, especially regarding its induction of schizophrenia-like symptoms. Recent research highlights the impact of ketamine on key brain regions associated with schizophrenia, specifically the prefrontal cortex (PFC) and hippocampus (Hip). This study focused on these regions to explore proteomic changes related to anxiety and cognitive impairment in a chronic ketamine-induced mouse model of schizophrenia. After twelve consecutive days of ketamine administration, brain tissues from these regions were dissected and analyzed. Using tandem mass tag (TMT) labeling quantitative proteomics techniques, 34,797 and 46,740 peptides were identified in PFC and Hip, corresponding to 5,668 and 6,463 proteins, respectively. In the PFC, a total of 113 proteins showed differential expression, primarily associated with the immuno-inflammatory process, calmodulin, postsynaptic density protein, and mitochondrial function. In the Hip, 129 differentially expressed proteins were screened, mainly related to synaptic plasticity proteins and mitochondrial respiratory chain complex-associated proteins. Additionally, we investigated key proteins within the glutamatergic synapse pathway and observed decreased expression levels of phosphorylated CaMKII and CREB. Overall, the study unveiled a significant proteomic signature in the chronic ketamine-induced schizophrenia mouse model, characterized by anxiety and cognitive impairment in both the PFC and Hip, and this comprehensive proteomic dataset may not only enhance our understanding of the molecular mechanisms underlying ketamine-related mental disorders but also offer valuable insights for future disease treatments.


Assuntos
Disfunção Cognitiva , Ketamina , Humanos , Camundongos , Animais , Ketamina/toxicidade , Proteômica , Córtex Pré-Frontal/metabolismo , Disfunção Cognitiva/metabolismo , Ansiedade/induzido quimicamente , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Neurotoxicol Teratol ; 101: 107318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38176600

RESUMO

Buspirone is a pharmaceutical used to treat general anxiety disorder by acting on the dopaminergic and serotoninergic system. Buspirone, like many human pharmaceuticals, has been detected in municipal wastewater; however, the environmental exposure risks are unknown for this psychoactive compound. We studied the effects of buspirone on the behavior of zebrafish, focusing on locomotor and anxiolytic behavior. We also measured transcripts associated with oxidative stress, neurotoxicity, and serotonin signaling to identify potential mechanisms underlying the behavioral changes. Concentrations ranged from environmentally relevant (nM) to physiologically active concentrations typical of human pharmaceuticals (µM). Buspirone treatment did not impact survival, nor did it induce deformities in zebrafish treated for 7 days up to 10 µM. There was a positive relationship between locomotor activity and buspirone concentration in dark periods of the visual motor response test. In the light-dark preference test, both the average time per visit to the dark zone and the percent cumulative duration in the dark zone were increased by 1 µM buspirone. Transcript levels of ache, manf, and mbp were decreased in larvae, while the expression of gap43 was increased following exposure to buspirone, indicating potential neurotoxic effects. There was also reduced expression of serotonin-related genes encoding receptors, transporters, and biosynthesis enzymes (i.e., 5ht1aa, sertb, and tph1a). These data increase understanding of the behavioral and molecular responses in zebrafish following waterborne exposure to neuroactive pharmaceuticals like buspirone.


Assuntos
Transtornos de Ansiedade , Buspirona , Peixe-Zebra , Animais , Humanos , Buspirona/farmacologia , Buspirona/metabolismo , Peixe-Zebra/metabolismo , Serotonina/metabolismo , Larva , Comportamento Animal , Ansiedade/induzido quimicamente , Locomoção , Preparações Farmacêuticas/metabolismo
14.
Aquat Toxicol ; 267: 106800, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183773

RESUMO

Bisphenol S (BPS) is a common endocrine-disrupting chemical globally used in several consumer and industrial products. Although previous studies suggested that BPS induces multiple effects in exposed organisms, very little is known about its intergenerational effect on offspring behavior and/or the potential underlying mechanisms. To this end, adult female zebrafish Danio rerio were exposed to BPS (0, 10, 30 µg/L) and 1 µg/L of 17-ß-estradiol (E2) as a positive control for 60 days. Afterwards, female fish were bred with untreated males, and their offspring were raised to 6 months old in control water. Maternal exposure to BPS decreased male offspring anxiety and antipredator behaviors while boldness remained unaffected. Specifically, maternal exposure to 10 and 30 µg/L BPS and 1 µg/L E2 were found to impact male offspring anxiety levels as they decreased the total time that individuals spent in the dark zone in the light/dark box test and increased the total track length in the center of the open field test. In addition, maternal exposure to all concentrations of BPS and E2 disrupted antipredator responses of male offspring by decreasing shoal cohesion in the presence of chemical alarm cues derived from conspecifics, which communicated high risk. To elucidate the possible molecular mechanism underlying these neuro-behavioral effects of BPS, we assessed the serotonergic system via changes in mRNA expression of serotonin receptors, including the 5-HT1A, 5-HT1B, and 5-HT1D subtypes, the serotonin transporter and monoamine oxidase (MAO). The impaired anxiety and antipredator responses were associated with reduced levels of 5-HT1A subtype and MAO mRNA expression within the brain of adult male offspring. Collectively, the results of this study demonstrate that maternal exposure to environmental concentrations of BPS can interfere with the serotonergic signaling pathway in the developing brain, subsequently leading to the onset of a suite of behavioral deficits in adult offspring.


Assuntos
Fenóis , Sulfonas , Poluentes Químicos da Água , Peixe-Zebra , Humanos , Animais , Masculino , Feminino , Peixe-Zebra/metabolismo , Exposição Materna , Serotonina/metabolismo , Poluentes Químicos da Água/toxicidade , Ansiedade/induzido quimicamente , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , RNA Mensageiro/metabolismo
15.
J Pain ; 25(3): 715-729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37820846

RESUMO

The current study aimed to evaluate anxiety behavior, hippocampal ionized calcium-binding adaptor molecule 1 (Iba1) and cannabinoid receptor 1 (CB1) gene expression, and nociceptive response in adulthood after a combination of fentanyl and cannabidiol (CBD) for nociceptive stimuli induced during the first week of life in rats. Complete Freund's adjuvant-induced inflammatory nociceptive insult on postnatal day (PN) 1 and PN3. Both fentanyl and CBD were used alone or in combination from PN1 to PN7. Behavioral and nociceptive tests were performed at PN60 and PN62. The expression of the microglial calcium-binding proteins Iba1 and CB1 was detected in the hippocampus using reverse Quantitative polymerase chain reaction (qPCR) and immunohistochemistry. Our results suggest that the anxiety behavior response and immune activation in adult life depend on the CBD dose combined with fentanyl for the nociceptive stimuli induced during the first week of life. Treatment of neonatal nociceptive insult with CBD and opioids showed significant dose-dependent and male-female differences. The increased gene expression in the hippocampus of the analyzed cannabinoid gene supports this data. In addition, treatment with fentanyl led to an increase in CB1 protein expression. Moreover, the expression of Iba1 varied according to the administered dose of CBD and may or may not be associated with the opioid. A lower dose of CBD during the inflammatory period was associated with enhanced anxiety in adult life. PERSPECTIVE: The treatment of nociceptive stimuli with CBD and opioids during the first week of life demonstrated significant sex differences in adult life on anxiety behavior and supraspinal pain sensitivity.


Assuntos
Canabidiol , Canabinoides , Ratos , Feminino , Masculino , Animais , Canabidiol/farmacologia , Fentanila/farmacologia , Dor/tratamento farmacológico , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Analgésicos Opioides
16.
Chemosphere ; 349: 140827, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042429

RESUMO

Bisphenols, synthetic organic compounds used in the production of plastics, are an extremely abundant class of Endocrine Disrupting Chemicals, i.e., exogenous chemicals or mixtures of chemicals that can interfere with any aspect of hormone action. Exposure to BPs can lead to a wide range of effects, and it is especially dangerous if it occurs during specific critical periods of life. Focusing on the perinatal exposure to BPA or its largely used substitute BPS, we investigated the effects on anxiety-related behaviors and the serotonergic system, which is highly involved in controlling these behaviors, in adult mice. We treated C57BL/6J dams orally with a dose of 4 µg/kg body weight/day (i.e., EFSA TDI) of BPA or BPS dissolved in corn oil or with vehicle alone, at the onset of mating and continued treatment until the offspring were weaned. Adult offspring of both sexes performed the elevated plus maze and the open field tests. Then, we analyzed the serotonergic system in dorsal (DR) and median (MnR) raphe nuclei by immunohistochemical techniques. Behavioral tests highlighted alterations in BPA- and BPS-treated mice, suggesting different effects of the bisphenols exposure on anxiety-related behavior in males (anxiolytic) and females (anxiogenic). The analysis of the serotonergic system highlighted a sex dimorphism in the DR only, with control females showing higher values of serotonin immunoreactivity (5-HT-ir) than control males. BPA-treated males displayed a significant increase of 5-HT-ir in all analyzed nuclei, whereas BPS-treated males showed an increase in ventral DR only. In females, both bisphenols-treated groups showed a significant increase of 5-HT-ir in dorsal DR compared to the controls, and BPA-treated females also showed a significant increase in MnR.These results provide evidence that exposure during the early phases of life to BPA or BPS alters anxiety and the raphe serotonergic neurons in a sex-dependent manner.


Assuntos
Disruptores Endócrinos , Serotonina , Gravidez , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Reprodução , Ansiedade/induzido quimicamente , Compostos Benzidrílicos/toxicidade , Disruptores Endócrinos/toxicidade
17.
Psychopharmacology (Berl) ; 241(2): 315-326, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882813

RESUMO

RATIONALE: Alpha-lipoic acid is an essential cofactor for aerobic metabolism and acts as a potent antioxidant in the body. It has been shown that acute exposure to methamphetamine induces oxidative stress, which is responsible for severe cognitive deficits in animals. The hippocampus plays a crucial role in the processing of memory and anxiety-like behavior. OBJECTIVES: In this study, preventive effect of the alpha-lipoic acid on memory impairment in methamphetamine-induced neurotoxicity was investigated. METHODS: Wistar male rats (200-220 g) were allocated to five groups (seven rats in each group): (1) saline + saline, (2) saline + vehicle (sunflower oil as alpha-lipoic acid solvent), (3) methamphetamine + vehicle, (4) methamphetamine + alpha-lipoic acid 10 mg/kg, and (5) methamphetamine + alpha-lipoic acid 40 mg/kg. Rats received intraperitoneal methamphetamine repeatedly (2 × 20 mg/kg, 2 h interval). Alpha-lipoic acid was injected 30 min, 24 h, and 48 h after the last injection of methamphetamine. The passive avoidance test and open field were used for evaluation of memory retrieval and anxiety, respectively. After behavioral test, rats were anesthetized, their brains were extracted, and after preparing hippocampal homogenates, malondialdehyde (MDA) level, catalase, and superoxide dismutase (SOD) activities were evaluated. RESULTS: Statistical analysis showed that injection of saline or sunflower oil had no significant effect on anxiety, memory, or oxidative stress markers. Methamphetamine induced memory impairment, increased anxiety-like behavior and MDA level, but it reduced catalase and SOD activity. Treatment with alpha-lipoic acid decreased MDA, increased catalase and SOD activity, and also prevented memory impairment and anxiety-like behavior. Our results showed that alpha-lipoic acid protected the hippocampus from oxidative stress by elevating SOD and CAT activities and reduced memory impairment following acute methamphetamine injection. These findings suggest that alpha-lipoic acid may have a protective effect against the adverse effects of methamphetamine exposure on the hippocampus. Therefore, the current data indicated that ALA can reduce oxidative stress predominantly by its antioxidant property.


Assuntos
Metanfetamina , Ácido Tióctico , Ratos , Masculino , Animais , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Catalase/metabolismo , Catalase/farmacologia , Ratos Wistar , Metanfetamina/farmacologia , Óleo de Girassol/metabolismo , Óleo de Girassol/farmacologia , Estresse Oxidativo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/prevenção & controle , Hipocampo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia
18.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1715-1725, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37721555

RESUMO

RATIONALE: Indomethacin (INDO) is a widely utilized non-steroidal anti-inflammatory drug (NSAID) with recognized effect on the central nervous system. Although previous reports demonstrate that prolonged treatment with indomethacin can lead to behavioral alterations such as anxiety disorder, the biochemical effect exerted by this drug on the brain are not fully understood. OBJECTIVES: The aim of present study was to evaluate if anxiety-like behavior elicited by indomethacin is mediated by brains oxidative stress as well as if alpha-tocopherol, a potent antioxidant, is able to prevent the behavioral and biochemical alterations induced by indomethacin treatment. METHODS: Zebrafish were utilized as experimental model and subdivided into control, INDO 1 mg/Kg, INDO 2 mg/Kg, INDO 3 g/Kg, α-TP 2 mg/Kg, α-TP 2 mg/Kg + INDO 1 mg/Kg and α-TP + INDO 2 mg/Kg groups. Vertical distributions elicited by novelty and brain oxidative stress were utilized to determinate behavioral and biochemical alterations elicited by indomethacin treatment, respectively. RESULTS: Our results showed that treatment with indomethacin 3 mg/kg induces animal death. No changes in animal survival were observed in animals treated with lower doses of indomethacin. Indomethacin induced significant anxiogenic-like behavior as well as intense oxidative stress in zebrafish brain. Treatment with alpha-tocopherol was able to prevent anxiety-like behavior and brain oxidative stress induced by indomethacin. CONCLUSIONS: Data presented in current study demonstrated for the first time that indomethacin induces anxiety-like behavior mediated by brain oxidative stress in zebrafish as well as that pre-treatment with alpha-tocopherol is able to prevent these collateral effects.


Assuntos
Indometacina , Peixe-Zebra , Animais , Indometacina/toxicidade , alfa-Tocoferol/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Estresse Oxidativo , Encéfalo , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Ansiedade/prevenção & controle
19.
J Neuroimmunol ; 386: 578252, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38086228

RESUMO

Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 µg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.


Assuntos
Disfunção Cognitiva , Citocinas , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Depressão/induzido quimicamente , Depressão/metabolismo , Privação do Sono/complicações , Doenças Neuroinflamatórias , Disfunção Cognitiva/induzido quimicamente , Ansiedade/induzido quimicamente , Plasticidade Neuronal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Interleucina-6/metabolismo , Hipocampo
20.
Exp Neurol ; 371: 114586, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37898396

RESUMO

Hydrogen sulfide (H2S), an endogenous gasotransmitter, exhibits the anxiolytic roles through its anti-inflammatory effects, although its underlying mechanisms remain largely elusive. Emerging evidence has documented that cell cycle checkpoint kinase 1 (Chk1)-regulated DNA damage plays an important role in the neurodegenerative diseases; however, there are few relevant reports on the research of Chk1 in neuropsychiatric diseases. Here, we aimed to investigate the regulatory role of H2S on Chk1 in lipopolysaccharide (LPS)-induced anxiety-like behavior focusing on inflammasome activation in the hippocampus. Cystathionine γ-lyase (CSE, a H2S-producing enzyme) knockout (CSE-/-) mice displayed anxiety-like behavior and activation of inflammasome-mediated inflammatory responses, manifesting by the increase levels of interleukin-1ß (IL-1ß), IL-6, and ionized calcium-binding adaptor molecule-1 (Iba-1, microglia marker) expression in the hippocampus. Importantly, expression of p-Chk1 and γ-H2AX (DNA damage marker) levels were also increased in the hippocampus of CSE-/- mice. LPS treatment decreased the expression of CSE and CBS while increased p-Chk1 and γ-H2AX levels and inflammasome-activated neuroinflammation in the hippocampus of mice. Moreover, p-Chk1 and γ-H2AX protein levels and cellular immunoactivity were significantly increased while CSE and CBS were markedly decreased in cultured BV2 cells followed by LPS treatment. Treatment of mice with GYY4137, a donor of H2S, inhibited LPS-induced increased in p-Chk1 and γ-H2AX levels, mitigated inflammasome activation and inflammatory responses as well as amelioration of anxiety-like behavior. Notably, SB-218078, a selective Chk1 inhibitor treatment attenuated the effect of LPS on inflammasome activation and inflammatory responses and the induction of anxiety-like behavior. Finally, STAT3 knockdown with AAV-STAT3 shRNA alleviated LPS-induced anxiety-like behavior and inhibited inflammasome activation in the hippocampus, and blockade of NLRP3 with MCC950 attenuated neuroinflammation induction and ameliorated LPS-induced anxiety-like behavior. Overall, this study indicates that downregulation of Chk1 activity by H2S activation may be considered as a valid strategy for preventing the progression of LPS-induced anxiety-like behavior.


Assuntos
Sulfeto de Hidrogênio , Camundongos , Animais , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Lipopolissacarídeos/toxicidade , Inflamassomos/metabolismo , Doenças Neuroinflamatórias , Quinase 1 do Ponto de Checagem/metabolismo , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Hipocampo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...